Home » What is the cube root of ##(sqrt3 -i)##?

What is the cube root of ##(sqrt3 -i)##?

I can’t completely agree with Gió’s answer, because it’s incomplete and also (formally) wrong.
The formal error is in the usage of De Moivre’s formula with non-integer exponents. De Moivre’s formula can be applied to integer exponents only. More details on this on the Wikipedia’s page
There you’ll find a partial extension of the formula, to deal with ##n##-th roots (it involves an extra-parameter ##k##): if ##z=r(cos theta+i sin theta)##, then
##z^{1/n}=r^{1/n}(cos ((theta+2 k pi)/n) + i sin ((theta+2 k pi)/n))## where ##k=0, …, n-1##.
One (and in some sense the) very fundamental property of complex numbers is that ##n##-th roots have… ##n## roots (solutions)! The parameter ##k## (that varies between ##0## and ##n-1##, so ##n## values) lets us summarize them in a single formula.
So cube roots have three solutions and finding just one of them is not enough: it’s just “##1/3## of the solution”.
I’ll write my solution-proposal below. Comments are welcome!
As Gió correctly suggested, the first step is expressing ##z=sqrt{3}-i## in its trigonometric form ##r(cos theta+i sin theta)##. When dealing with roots, the trigonometric form is (almost) always an useful tool (together with the exponential one). You get:
##r=sqrt{x^2+y^2}=sqrt{(sqrt{3})^2+(-1)^2}=sqrt{3+1}=sqrt{4}=2##
##theta=arctan(y/x)=arctan(- 1/sqrt{3})=-pi/6##
So ##z=r(cos theta + i sin theta)=2(cos (-pi/6)+i sin(-pi/6))##
Now you want to compute the roots. By the formula reported above, we get:
##z^{1/3}=r^{1/3}(cos ((theta+2 k pi)/3)+i sin ((theta+2 k pi)/3))=2^{1/3}(cos ((-pi/6+2 k pi)/3)+i sin ((-pi/6+2 k pi)/3))##
where ##k=0, 1, 2##. So there are three different values of ##k## (##0##, ##1## and ##2##) that give birth to three different complex roots of ##z##:
##z_0=2^{1/3}(cos ((-pi/6+0)/3)+i sin ((-pi/6+0)/3))=2^{1/3}(cos (-pi/18)+i sin (-pi/18))##
##z_1=2^{1/3}(cos ((-pi/6+2 pi)/3)+i sin ((-pi/6+2 pi)/3))=2^{1/3}(cos (-11/18 pi)+i sin (-11/18 pi))##
##z_2=2^{1/3}(cos ((-pi/6+4 pi)/3)+i sin ((-pi/6+4 pi)/3))=2^{1/3}(cos (-23/18 pi)+i sin (-23/18 pi))##
##z_0##, ##z_1## and ##z_2## are the three solutions.
The geometric interpretation of the formula for the ##n## roots is very useful to draw the solutions in the complex plane. Also the plot points out very nicely the properties of the formula.
First of all, we can notice that all the solutions have the same distance ##r^{1/n}## (in our example ##2^{1/3}##) from the origin. So they all lie on a circumference of radius ##r^{1/n}##. Now we have to point out where to place them on this circumference. We can rewrite the arguments of sine and cosine in the following way:
##z^{1/n}=r^{1/n}(cos (theta/n+(2pi)/n k)+i sin (theta/n+(2pi)/n k))##
The “first” root corresponds to ##k=0##:
##z_0=r^{1/n}(cos (theta/n)+i sin (theta/n))##
All the other roots can be obtained from this by adding the angle ##(2pi)/n## recursively to the angle ##theta/n## relative to the first root ##z_0##. So we are moving ##z_0## on the circumference by a rotation of ##(2pi)/n## radians (##(360°)/n##). So the points are located on the vertices of a regular ##n##-gon. Given one of them, we can find the others.
In our case:
where the blue angle is ##theta/n=-pi/18## and the magenta one is ##(2pi)/n=2/3 pi##.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more
Live Chat+1 763 309 4299EmailWhatsApp

We Can Handle your Online Class from as low as$100 per week