Home » How do you Calculate the mass in grams of NH4Cl that must be added 400.0 mL of a 0.930 M solution of NH3 to prepare a pH = 9.00 buffer?

How do you Calculate the mass in grams of NH4Cl that must be added 400.0 mL of a 0.930 M solution of NH3 to prepare a pH = 9.00 buffer?

##”36.2 g NH”_4″Cl”##
Adding ammonium chloride, ##”NH”_4″Cl”##, to an ammonia solution will effectively create a that contains ammonia, a weak base, and the ammonium ion, ##”NH”_4^(+)##, its conjugate acid.
This means that you can use the Henderson – Hasselbalch equation to find the concentration of conjugate base needed to make the of the buffer equal to ##9##.
##color(blue)(pOH = pK_b + log( ([“conjugate acid”])/([“weak base”]))##
To do that, you need to know the value of the base dissociation constant, ##K_b##, for ammonia
##K_b = 1.8 * 10^(-5)##
So, use the given pH to find the ##”pOH”## of the solution
##”pOH” = 14 – “pH” = 14 – 9.00 = 5.00##
This means that you have
##5.00 = -log(1.8 * 10^(-5)) + log( ([“NH”_4^(+)])/([“NH”_3]))##
##5.00 = 4.74 + log( ([“NH”_4^(+)])/([“NH”_3]))##
This is equivalent to
##log( ([“NH”_4^(+)])/([“NH”_3])) = 0.26##
To get rid of the log, use
## ([“NH”_4^(+)])/([“NH”_3]) = 10^(0.26)##
This wil get you
## ([“NH”_4^(+)])/([“NH”_3]) = 1.8197##
This tells you tha the ratio between the concentration of conjugate acid and the concentration of weak base must be equal to ##1.8197##.
The concentration of ammonium ions will thus be
##[“NH”_4^(+)] = 1.8197 * [“NH”_3]##
##[“NH”_4^(+)] = 1.8197 * “0.930 M” = “1.6923 M”##
Now, ammonium chloride dissociates completely in aqueous solution to give
##”NH”_4″Cl”_text((aq]) -> “NH”_text(4(aq])^(+) + “Cl”_text((aq])^(-)##
Notice that ##1## mole of ammonium chloride produces ##1## mole of ammonium ions in solution. This means that the of the ammonium chloride will be equal to that of the ammonium ions
##[“NH”_4″Cl”] = [“NH”_4^(+)] = “1.6923 M”##
Assuming that the volume of the solution does not change after adding the ammonium chloride, the number of moles you’d get in the solution will be
##c = n/V implies n = c * V##
##n = “1.6923 M” * 400.0 * 10^(-3)”L” = “0.6769 moles NH”_4″Cl”##
Finally, to get how many grams would contain this many moles, use the compound’s molar mass
##0.6769color(red)(cancel(color(black)(“moles”))) * ” 53.49 g”/(1color(red)(cancel(color(black)(“mole”)))) = color(green)(“36.2 g NH”_4″Cl”)##
SIDE NOTE It’s unreasonable to think that dissolving 36.2 g of ammonium chloride in 400.0 mL of solution will not change the total volume of the buffer – it will!
Now, the thing to remember here is that you need to have that ratio between the concentration of conjugate base and the concentration of weak base regardless of what the total volume of the buffer will be.
This implies that the mole ratio can be used in place of the concentration ratio, since both species are in the same solution.
Here’s what I mean. Let’s assume that adding the ammonium chloride will increase the volume of the buffer to ##0.4 + x## liters.
The Henderson – Hasselbalch equation would then be
##5.00 = 4.74 + log( (“moles of conjugate acid”/”0.4 + x”)/(“moles of weak base”/”0.4 + x”))##
This will produce the same result
##”moles of ammonium ions”/”moles of ammonia” = 1.8197##
Since you know that your initial ammonia solution contained
##n_”ammonia” = “0.930 M” * 400.0 * 10^(-3)”L” = “0.372 moles”##
it follows that you would still need to add
##n_”ammonium chloride” = 0.372 * 1.8197 = “0.6769 moles”##
of ammonium chloride to get the same buffer pH.
You can test this for various total volumes of the final solution. Let’s say that the volume doubles upon the addition of the ammonium chloride. The concentrations of the two species will be
##[“NH”_3] = “0.372 moles”/(800.0 * 10^(-3)”L”) = “0.465 M”##
##[“NH”_4^(+)] = “0.6769 moles”/(800.0 * 10^(-3)”L”) = “0.8461 M”##
The ##pOH## of the solution will be
##pOH = 4.74 + log(( 0.8461 color(red)(cancel(color(black)(“M”))))/(0.465color(red)(cancel(color(black)(“M”))))) = 4.99997 ~~5##
So you’re good to go.
Now, if they ask you for the new volume, that’s a different story. You will need to use the equation
##V_”total” = n_(NH_3) * bar(V)_(NH_3) + n_(NH_4Cl) * bar(V)_(NH_4Cl)##
Here ##bar(V)## represents the reciprocal of the molar density
Here’s another example to go by
http://socratic.org/questions/what-mass-of-ammonium-chloride-should-be-added-to-2-65-l-of-a-0-160-m-nh3-in-ord

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more
Live Chat+1 763 309 4299EmailWhatsApp

We Can Handle your Online Class from as low as$100 per week